B. Sc. Ist Year (Ist Semester)

Paper-I (CH-101)Inorganic Chemistry (Theory) M. Marks: 32 Time: 3 Hrs.

Note: Nine questions will be set. Q. No. 1, based on whole syllabus, is compulsory. There will be four questions from section A and four from section **B**. Candidates will be required to attempt five questions in all, selecting at least two questions from each section. Question no. 1 carry 8 marks and all questions in Section A & B (not more than 2 - 3 parts) carry 6 marks each.

Section – A (23 periods)

Atomic Structure

Idea of de Broglie matter waves, Heisenberg's uncertainty principle, atomic orbitals, quantum numbers, radial and angular wave functions, normal and orthogonal wave functions, significance of Ψ and Ψ^2 , probability distribution curves, shapes of s, p, d, f orbitals, Aufbau and Pauli exclusion principles, Hund's multiplicity rules, Electronic configuration of elements, effective nuclear charge, Slater's rules.

Periodic table and atomic properties

Classification of periodic table into s, p, d, f blocks, atomic and ionic radii, ionization energy, electron affinity and electronegativity definition, methods of determination or evaluation, trend in periodic table (in s and p-block elements), Pauling, Mulliken, Allred Rachow and Mulliken Jaffe's electronegativity scale, Sanderson's electron density ratio.

Section – B (22 periods)

Covalent Bond

Valence bond theory (Heitler-London and Pauling approach) and its limitation, directional characteristics of covalent bond, various type of hybridization and shapes of simple inorganic molecules and ions (BeF₂, BF₃, CH₄, PF₅, SF₆, IF₇, SO₄⁻², ClO₄⁻¹, NO₃⁻¹) valence shell electron pair repulsion (VSEPR) theory to NH₃, H₃O⁺, SF₄, ClF₃, H₂O, SnCl₂, ClO₃⁻¹ and ICl₂⁻¹. Molecular orbital theory of homonuclear (N₂, O₂) heteronuclear (CO and NO) diatomic molecules and ions, bond energy, bond angle, bond length and dipole moments, percentage ionic character from dipole moment and electronegativity difference.

Ionic Solids

Ionic structures (NaCl, CsCl, ZnS (Zinc blende), CaF₂) size effects, radius ratio rule and its limitations, Madelung constant, Stoichiometric and Non stoichiometric defects in crystals, Lattice energy (mathematical derivation excluded) and Born-Haber cycle, Solvation energy and its relation with solubility of Ionic solids, Polarizing power and Polarisability of ions, Fajan's rule.