BSC (CS)

	Program Outcome(PO)
РО	After completing the three year degree program, students will be able to: Attain a strong base to pursue higher education in the field of Computer Science and skill to use modern computing tools and techniques for learning and developing software solutions.
	Program Specific Outcome(PSO)
PSO	After Completing Bachelor of Computer Science, the student will be able to demonstrate a deep and analytical understanding of the Mathematics, Computer science and Physics subjects. The student can pursue studies in any of the above subjects too.

I Year Semester I		
Course: CSC-101 Computer & Programming Fundamental		
CSC-101	Understand the complete fundamentals of Computer System	
Course: CSC-102 PC Software		
CSC-102	Explain Windows and its Features including Windows Accessories and	
	completeknowledge of Ms- Office.	
Course:BM-111 Algebra		
C0-111	Understand Matrices, Polynomial equations and solutions of cubic	
	equations.	
Course: BM-112 Calculus		
C0-112	Understand concepts like Successive differentiation, Cartesian cures	
	andquadrature.	
Course: BM-113 Solid Geometry		
C0-113	Understand and apply second degree equations, sphere, central	
	conicoids, and parabola.	

Course:PH-101 Classical Mechanics & Theory of relativity

C0-101	Apply transformation equations, generalized notations, applications of theory of relativity.		
С	ourse: PH-102 Electricity, Magnetism & Electromagnetic Theory		
CO-102	Use of Vector basic and electric field, electromagnetism and circuit analysis.		
	Course: Eng-101 English (BSc)-I		
C0-101	ImproveLSRW-listening, speaking, reading and writing skills and their lated sub-skills.		
I Year Sei	nester II		
	Course: CSC- 201 Programming in C		
CO-201	Knowledge of Operators, Data types, Array, Functions and can develop programs in C language		
Course: CSC- 202 Logical Organization of Computer			
CO-202	Understand Number System, Logic Gates and various Combinational circuits.		
	Course: BM-121 Number Theory & Trigonometry		
CO-121	Expansion of trigonometric functions, various theorems of Gauss.		
	Course: BM-122 Ordinary Differential Equation		
CO-122	122 Explain the concept of Orthogonal trajectories and linear differential equations of second order.		
	Course: BM-123 Vector Calculus		
C0-123	Applications of Vector integration, Vector divergence.		
Course:PH-201 Properties of Matter & Kinetic Theory of Gases			
CO-201	Understand and apply moment of Inertia, kinetic theory of Gases.		
Course: PH-202 Semiconductor Devices			
CO-202	Discuss the applications of transistors, amplifiers and oscillators.		
Course: Eng-201 English (BSc)-II			
C0-201	Writing Official letters/applications and Accuracy in using English in situations(for example: greetings, in the post office, catching at rain, at a bank, making a telephone call, buying vegetables, at the hospital, on the bus etc.		

Course: BM-352 Groups & Rings			
CO-352	Identify various types of Groups, Polynomial Rings and permutation groups.		
	Course: BM-353 Numerical Analysis		
CO-353	Understand and perform Computer Arithmetic: Floating-point representation of numbers, arithmetic operations with normalized floating-point numbers and their consequences, significant figures. Error in number representation-inherenterror, truncation, absolute, relative, percentage and round-off error and apply Iterative Methods.		
	Course: PH-501 Quantum & Laser Physics		
CO-501	Applications of Schrodinger wave equation, absorption and emission of radiation, threshold		
	Course: PH-502 Nuclear Physics		
CO-502	Applications of Alpha disintegration and its theory, interaction & absorption of Gamma ray.		
	Course: ST-501 Applied Statistics		
CO-501	Understand and analyze time series, various demographic methods & indexnumbers		
C	ourse: ST-502 Numerical Methods & Fundamental of Computer		
CO-502	Understand various numerical methods like Interpolation, Extrapolation, Newton's formula, Trapezoidal rule & Simpson rule		
III YEAF	R SEMESTER VI		
	Course: CSC-601 Relational Database Management System		
CO-601	Understand and describe Functional Dependencies and Normalization and Understand SQL, PL/SQL.		
	Course: CSC- 602 Computer Networks		
CO-602	Describe how computer networks are organized with the concept of layered Approach and Explain various transmission media.		
Course: BM-361 Real & Complex Analysis			
CO-361	Discuss mapping by elementary functions, Extended stereographic projection of Complex numbers & Fourier series		
Course: BM-362 Linear Algebra			
CO-362	Understand Vector space, Isomorphism of Vector space, Algebra of linear transformation & Eigen vectors of linear transformations		
	Course: BM-363 Dynamics		
CO-362	Calculate & Apply velocity, Acceleration, Mass, Momentum and Force & Motion		
	Course: PH-601 Solid States & Nano Physics		

CO-601	Discuss Crystal structure, X-Ray diffraction, Super conducting system		
	&Importance of nano scale & nano technology.		
Course: PH-602 Atomic & Molecular Spectroscopy			
CO-602	Various quantization laws Orbital magnetic dipole, Penetrating & non		
	Penetrating orbits		
	Course: ST-601 Statistical Quality Control		
CO-601	Describe Various statistical quality control uses, Acceptance sampling		
	& various laws of demand & supply		
Course: ST-602 Operational Research			
CO-602	Meaning & necessity of various OR Models, Graphical solutions of		
	LPP & various artificial variable techniques		

B.A/B.Sc. Maths Course Outcomes

Semester I		
Course Code	Course Name	COs: After successfully completing this course, students will be able to
Paper-I	Algebra	 Symmetric, Skew symmetric, Hermitian and skew Hermitian matrices. Elementary Operations on matrices. Cayley Hamilton theorem and its use in finding the inverse of a matrix. Applications of matrices to a system of linear (both homogeneous and non- homogeneous) equations. Relations between the roots and coefficients of general polynomial equation in one variable. Transformation of equations. Nature of the roots of an equation Descarte's rule of signs. Solutions of cubic equations (Cardon's method). Biquadratic equations and their solutions.
Paper-II	Calculus	 Definition of the limit of a function. Basic properties of limits, Continuous functions and classification of discontinuities. Maclaurin and Taylor series expansions. Asymptotes in Cartesian coordinates, intersection of curve and its asymptotes, asymptotes in polar coordinates. Curvature, radius of curvature for Cartesian curves, parametric curves, polar curves. Tracing of curves in Cartesian, parametric and polar coordinates. Reduction formulae, Rectification, intrinsic equations of curve. Quadrature (area) Sectorial area. Area bounded by closed curves. Volumes and surfaces of solids of revolution.
Paper-III	Solid Geometry	 General equation of second degree. Tracing of conics. Tangent at any point to the conic, chord of contact, pole of line to the conic, director circle of conic. Sphere: Plane section of a sphere. Sphere through a given circle. Intersection of two spheres, radical plane of two spheres. Co-axial system of spheres Central Conicoids: Equation of tangent plane. Director sphere. Normal to the conicoid, Polar plane of a point. Enveloping cone of a conicoid. Enveloping cylinder of a conicoid. Paraboloids: Circular section, Plane sections of conicoid, Generating lines. Confocal conicoid. Reduction of second- degree equations.

Semester II		
Course Code	Course Name	COs: After successfully completing this course, students will be able to
Paper-I	Number Theory and Trigonometry	 Divisibility G.C.D. (greatest common divisors) L.C.M. (least common multiple) Primes, Complete residue system and reduced residue system modulo m. Euler function, Euler's generalization of Fermat's theorem. Chinese Remainder Theorem. De Moivre's Theorem and its Applications. Expansion of trigonometrical functions, Direct circular and hyperbolic functions and their properties. Inverse circular and hyperbolic functions and their properties. Logarithm for complex quantity
Paper-II	Ordinary Differential Equations	 o Geometrical meaning of a differential equation. Exact differential equations, integrating factors. Orthogonal trajectories: in Cartesian coordinates and polar coordinates. Self-orthogonal family of curves. o Linear differential equations of second order: Reduction to normal form. Solution of simultaneous differential equations involving predator (dt/dx) (dy/dt) etc. Method of auxiliary equations.
Paper-III	Vector Calculus	o Scalar and vector product of three vectors, product of four vectors. Divergence and curl of vector point function, cylindrical co-ordinates and Spherical coordinates. Vector integration; Line integral, Surface integral, Volume integral, Theorems of Gauss, Green & Stokes and problems based on these theorems.
		Semester III
Course Code	Course Name	COs: After successfully completing this course, students will be able to
Paper-I	Advanced Calculus	o Continuity, Sequential Continuity, properties of continuous functions, Uniform continuity, chain rule of differentiability. Taylor's theorem for functions of two variables. Lagrange's method of multipliers. Surfaces: Tangent planes, one parameter family of surfaces, Envelopes.
Paper-II	Partial Differential Equations	 o Partial differential equations: Formation, order and degree, Equations reducible to linear equations with constant co- efficients. Solution of linear hyperbolic equations, Monge's method for partial differential equations of second order. Cauchy's problem for second order partial differential equations.
Paper-III	Statics	 Composition and resolution of forces. Parallel forces. Moments and Couples. Analytical conditions of equilibrium of coplanar forces. Friction. Centre of Gravity. Virtual work. Forces in three dimensions. Point sets central axis, Wrenches.

Semester IV		
Course Code	Course Name	COs: After successfully completing this course, students
Paper-I	Sequences and Series	 will be able to o Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, Neighborhoods. Infinite series: Convergence and divergence of Infinite Series, Infinite series: D-Alembert's ratio test, Raabe's test, Convergence and absolute convergence of infinite products.
Paper-II	Special Functions and Integral Transforms	 Series solution of differential equations – Power series method, Definitions of Beta and Gamma functions. Bessel equation and its solution: Bessel functions and their properties Convergence, recurrence, Relations and generating functions, Orthogonality of Bessel functions.
Paper-III	Programming In C & Numerical Methods	 o Programmer's model of a computer, Algorithms, Flow charts, Data types, Operators and expressions, Input / outputs functions. Decisions control structure: Decision statements, Logical and conditional statements, Implementation of Loops. Differential equations involving predator (dt/dx) (dy/dt) etc. Method of auxiliary equations.
Paper-III	Vector Calculus	o Scalar and vector product of three vectors, product of four vectors. Divergence and curl of vector point function, cylindrical co-ordinates and Spherical coordinates. Vector integration; Line integral, Surface integral, Volume integral, Theorems of Gauss, Green & Stokes and problems based on these theorems.
		Semester V
Course Code	Course Name	COs: After successfully completing this course, students will be able to
Paper-I	Real Analysis	o Riemann integral, Integrability of continuous and monotonic functions, The Fundamental theorem of integral calculus. Mean value theorems of integral calculus. Improper integrals and their convergence, Comparison tests, Abel's and Dirichlet's tests, Frullani's integral.
Paper-II	Groups And Rings	o Definition of a group with example and simple properties of groups, Subgroups and Subgroup criteria, Rings, Subrings, Polynomial rings over commutative rings, Unique factorization domain.
Paper-III	Numerical Analysis	o Finite Differences operators and their relations. Finding the missing terms and effect of error in a difference tabular value, Central Differences: Gauss forward and Gauss's backward interpolation formulae, Numerical Differentiation, Eigen Value Problems: Power method, Jacobi's method, given's method, House- Holder's method, QR method, Lanczos method.

Semester VI		
Course Code	Course Name	COs: After successfully completing this course, students
Paper-I	Real And Complex Analysis	 vill be able to o Jacobians, Beta and Gama functions, Double and Triple integrals, Dirichlet's integrals, change of order of integration in double integrals. Fourier's series: Fourier expansion of piecewise monotonic functions, Properties of Fourier Co-efficients, Dirichlet's conditions.
Paper-II	Linear Algebra	 Vector spaces, subspaces, Sum and Direct sum of subspaces, Linear span, Linearly Independent and dependent subsets of a vector space. Finitely generated vector space, Homomorphism and isomorphism of vector spaces, Linear transformations and linear forms on vector spaces, Vector space of all the linear transformations Dual Spaces,
Paper-III	Dynamics	 Velocity and acceleration along radial, transverse, tangential and normal directions. Relative velocity and acceleration. Simple harmonic motion. Elastic strings. Mass, Momentum and Force. Newton's laws of motion. Work, Power and Energy. Definitions of Conservative forces and Impulsive forces.